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Abstract
We discuss the spectrum and the eigenfunctions of a 2D Wannier–Stark system
in both the tight-binding and single-band approximations. We show that
the unfamiliar infinite-variable Bessel functions play a crucial role in these
considerations. Furthermore, a closed formula for the eigenfunction for an
arbitrary tight-binding ansatz in terms of an expansion in Wannier states is
derived. Finally we give a closed form solution for the Wannier–Stark states in
the scope of the single-band approximation.

PACS numbers: 02.30.Gp, 05.50.+q, 31.10.+z, 73.21.Cd

1. Introduction

The tight-binding model for the discussion of Wannier–Stark systems (i.e. spatial periodic
structures affected by a constant or time-periodic external force) has always provided an
easy approach and a playground for the description of a multitude of physical phenomena.
The work in this area covers such different applications or effects as ac-field controlled
Anderson localization in disordered superlattices [Hol95], the description of Rabi oscillations
between different Bloch bands [Zha96] or the discussion of carrier dynamics in semiconductor
superlattices [Rot95]. For a review on the whole subject, see [Glü01b]. Depending on the
strength of the field applied, the interaction between different bands can be neglected and the
description can be restricted to the so-called single-band approximation. All these publications
deal with a 1D Wannier–Stark system. Recently, a new theoretical and numerical approach to
2D Wannier–Stark systems was successfully applied [Glü01a], but not in the scope of a tight-
binding approximation. This motivated a discussion of the analogue tight-binding system. For
first steps in this direction, see the works of Nakanish et al [Nak93, Nak95].

In this work, we discuss the properties of a 2D Wannier–Stark system in both the tight-
binding and the single-band approximations. By solving the appropriate Schrödinger equation
in closed form, we derive the Wannier–Stark spectrum of the system independently of the field
applied. Furthermore, it is shown that the usage of the infinite-variable Bessel functions [Lor95]
allows the solution of nearly every possible tight-binding model in a straightforward manner.
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2. 2D Bloch system

Let us briefly recapitulate the properties of a Bloch system which will be needed in the following
discussion. The typical 2D Bloch Hamiltonian reads

H0 = p2

2m
+ V (r) (1)

where V (r) is a periodic potential with the two periods ax and ay in the x- and y-directions
in cartesian coordinates r = (x, y). The simultaneous eigenstates of this Hamiltonian H0 and
the translation over one period in each direction T1,1 are called Bloch states |�κ〉:

H0|�κ〉 = E(κ)|�κ〉 T1,1|�κ〉 = exp(ir1,1 · κ) |�κ〉. (2)

Here we use the abbreviation r1,1 = (ax, ay). Because the Bloch states are periodic in κ, they
can be expanded in a Fourier series:

|�κ〉 =
∑

m,n∈Z

exp(irm,n · κ) |m, n〉 where rm,n =
(

max

nay

)
. (3)

The states |m, n〉 introduced in this expansion are the so-called Wannier states. They are—in
contrast to the extended Bloch states—exponentially localized in the unitary cell at position
(m, n) of the system and provide therefore the ideal orthogonal basis set for the tight-binding
approximations. Note that they are neither eigenstates of H0 nor T1,1. The different Wannier
states can be generated by

|m, n〉 = Tm,n|0, 0〉 (4)

where Tm,n = exp
(
ip · rm,n/h̄

)
is the translational operator which shifts the state |0, 0〉 to the

cell at position (m, n).

3. Tight-binding Hamiltonian for a Wannier–Stark system

A Wannier–Stark system is obtained when one adds an external force F (t) to the Hamiltonian
(1). For our discussion we restrict ourselves to the case of a constant (i.e. time-independent)
field described by the Hamiltonian

H = H0 + F · r. (5)

As mentioned above, we use the Wannier states of the field-independent case as a basis to
evaluate the Hamiltonian. In the tight-binding approximation only the interaction in the so-
called von Neumann neighbourhood is taken into account which leads to the tight-binding
Hamiltonian Htb

H ≈ Htb =
∑
m,n

(
E + Fxaxm + Fyayn

) |m, n〉〈m, n|

+
�x

4

(|m + 1, n〉〈m, n| + |m, n〉〈m + 1, n|)
+

�y

4

(|m, n + 1〉〈m, n| + |m, n〉〈m, n + 1|). (6)

Here, E is given by E = 〈0, 0|H0|0, 0〉 and �x and �y are the band widths along the two
axes for H0. The term proportional to Fxaxm + Fyayn results from the expectation value
〈m, n|F ·r|m′n′〉, which—using the orthogonality of the Wannier states and the relation (4)—
equals F · rm,nδm,m′δn,n′ . To derive the energy spectrum of the system, we have to discuss the
Schrödinger equation

Htb|�〉 = Ek|�〉. (7)
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We expand the wavefunction |�〉 using the Wannier states |m, n〉
|�〉 =

∑
m,n

cm,n|m, n〉. (8)

Inserting this into equation (7) leads to a recursion relation for the coefficients cm,n

(E + Fxaxm + Fyayn)cm,n +
�x

4
(cm−1,n + cm+1,n) +

�y

4
(cm,n−1 + cm,n+1) = Ekcm,n (9)

or

(Ek − E − Fxaxm − Fyayn)cm,n = �x

4
(cm−1,n + cm+1,n) +

�y

4
(cm,n−1 + cm,n+1). (10)

For this first discussion we will restrict ourselves to ‘rational’ directions of the field strength

F = F√
q2 + r2

(
q

r

)
q, r ∈ Z (11)

where q and r are coprime integers (gcd(q, r) = 1). Furthermore, we will consider the special
case ax = ay = a which simplifies the notation. Under these preconditions, there exists a
common integer multiple of the two one-dimensional Bloch times associated with the two
directions of periodicity. Only in this case can we expect to find a non-continuous, structured
energy spectrum [Glü01a]. This was already pointed out in [Fuk73]. With these assumptions,
the recursion relation reads

aF√
q2 + r2

(√
q2 + r2

Ek − E

aF
− mq − nr

)
cm,n

= �x

4
(cm−1,n + cm+1,n) +

�y

4
(cm,n−1 + cm,n+1). (12)

To solve this recurrence relation we consider the infinite-variable Bessel functions (IVBs)

Js({βm}) = 1

π

∫ π

0
cos

(
sθ −

∑
m

βm sin(mθ)

)
dθ (13)

with s ∈ Z, m ∈ N and
∑∞

1 |βm| < ∞. The IVBs are a straightforward extension of the
usual Bessel functions with integer index to multiple or even infinitely many variables. (IVBs
were first used by Pérès and Appell [P15, App15]. For a well written introduction to IVBs,
see [Lor95]; for another physical application, see [Dat92].) For {βm} = {β, 0, 0, . . .} we
rediscover the ordinary Bessel functions Js(β). The IVBs satisfy the recursion relation

2sJs({βm}) =
∑

m

mβm (Js−m({βm}) + Js+m({βm})) s ∈ Z (14)

if the series
∑

m m|βm| is convergent. First assume q �= r (the other case q = r = 1 will be
discussed later). With the abbreviations

s =
√

q2 + r2
Ek − E

aF
− mq − nr

βq = 2
�x

4

√
q2 + r2

aFq
= �x

2aFx

βr = 2
�y

4

√
q2 + r2

aFr
= �y

2aFy

(15)

it is straightforward to check that the Js(βq, βr) (all other βi are set to zero) fulfil the recursion
relation (12) provided that s is integer, which leads to the condition√

q2 + r2
Ek − E

aF
∈ Z (16)
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or

Ek = E + k
aF√

q2 + r2
with k ∈ Z. (17)

This is exactly the same result that was obtained in [Glü01a] using a full quantum computation
and diagonalizing the time evolution operator over the Bloch time TB. The energy aF/

√
q2 + r2

is equal to the energy splitting between two neighbouring subbands.
Let us write down again the expansion coefficients cm,n:

cm,n = Js(βq, βr) = Jk−(mq+nr)(βq, βr) (18)

or

cm,n = 1

π

∫ π

0
cos

(
sθ − βq sin(qθ) − βr sin(rθ)

)
dθ. (19)

Inserting this into (8) gives

|�k〉 =
∑
m,n

cm,n|m, n〉 =
∑
m,n

Jk−(mq+rn)(βq, βr)|m, n〉. (20)

Therefore each Wannier state |m, n〉 which satisfies the condition mq + nr = constant has the
same prefactor and gives the same contribution. In configuration space all these states lie on a
line perpendicular to the direction of the field. This leads to the expected symmetry properties
of |�k〉 which are discussed below.

But first let us briefly consider the case q = r = 1 which we skipped before. Here (12)
reduces to
aF√

2

(√
2

Ek − E

aF
− m − n

)
cm,n = �x

4
(cm−1,n + cm+1,n) +

�y

4
(cm,n−1 + cm,n+1). (21)

The solution to this equation is the usual Bessel function

cm,n = Js

(
�x + �y√

2aF

)
(22)

with s = √
2(Ek − E)/(aF ) − (m + n). The wavefunction is given by

|�k〉 =
∑
m,n

cm,n|m, n〉 =
∑
m,n

Jk−(m+n)

(
�x + �y√

2aF

)
|m, n〉 (23)

with the expected energy splitting �E = aF/
√

2 between two neighbouring subbands.
Let us return to the case q �= r . As we have seen, the condition that two Wannier states

|m, n〉 and |m̃, ñ〉 contribute with equal weight to the expansion (8), i.e. cm,n = cm̃,ñ, reads

mq + nr = m̃q + ñr (24)

or

(m − m̃)q = (ñ − n)r. (25)

Because q and r are coprime integers, this equation can only be satisfied if we have

m − m̃ = gr ñ − n = gq g ∈ N (26)

which yields a condition for the energy of these states. Computing the energy expectation
values

〈m, n|H0 + F · r|m, n〉 = 〈0, 0|H0 + F · r|0, 0〉 + mFxa + nFya

= 〈0, 0|H0 + F · r|0, 0〉 + m̃Fxa + ñFya

= 〈m̃, ñ|H0 + F · r|m̃, ñ〉 (27)

we see that the two states |m, n〉 and |m̃, ñ〉 have the same energy expectation value.



Letter to the Editor L109

3.1. Symmetries of �k(r)

To derive the symmetry properties of the wavefunction, we use the coordinate shift operator
Tm,n,

Tm,nr = r + a

(
m

n

)
i.e. Tm,n = exp

(
i

h̄
p · rm,n

)
. (28)

When we shift the argument of the wavefunction �k(r) = 〈r|�k(r)〉 in a direction orthogonal
to the field by multiples of the potential period a, i.e.

�k

(
r + rr,−q

) = Tr,−q�k(r) =
∑
m,n

cm,n〈r + rr,−q |m, n〉

=
∑
m,n

cm,n〈r|m − r, n + q〉

=
∑
m,n

cm−r,n+q〈r|m − r, n + q〉

= �k(r) (29)

we see that the wavefunction is invariant under this translation. Therefore �k(r) is periodic in
the direction orthogonal to the field with period a

√
q2 + r2. One can derive this result directly

from the Schrödinger equation. Starting with its representation in configuration space

H(r)�k(r) = Ek�k(r) (30)

we apply the translation Tr,−q perpendicular to the field (Tr,−q commutes with H because
F · rr,−q = 0):

Tr,−qH(r)�k(r) = H(r)�k(r + rr,−q) = Ek�k(r + rr,−q). (31)

Therefore �k(r) and �k(r + rr,−q) fulfil the same equation, i.e. �k(r) = �k(r + rr,−q) as
above.

3.2. The 1D case as a special case of the 2D problem

In this subsection we will briefly discuss the connection of 1D and 2D Wannier–Stark systems.
Let therefore F be given by F = FEx , where Ex is the unit vector in the x-direction. The
Bloch time TB is then given by TB = 2πh̄/(aF ). Inserting this into equation (9) leads to

aF

(
Ek − E

aF
− m

)
cm,n = �x

4
(cm−1,n + cm+1,n) +

�y

4
(cm,n−1 + cm,n+1). (32)

The prefactor of the left hand side is independent of n and—with the ansatz cm,n = gmfn—the
contributions to m and n are separable and

aF

(
Ek − E

aF
− m

)
− �x

4gm

(gm−1 + gm+1) = K = �y

4fn

(fn−1 + fn+1) (33)

where K is a constant whose value and significance will be determined later. Let us first
consider the right-hand side of this equation:

4K

�y

fn = fn−1 + fn+1. (34)

The solution of this equation is fn = f exp(inα), i.e. a periodic function of the site index n.
Therefore we have a periodic solution orthogonal to the field with the period 2π/α.
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Now let us identify the constant K . We consider a translation of the eigenfunction �k(r)

orthogonal to the field:

�k(r + aey) = T0,1�k(r) =
∑
m,n

cm,n〈r + aey |m, n〉

=
∑
m,n

cm,n〈r|m, n − 1〉 =
∑
m,n

gmf exp(inα)r|m, n − 1〉

= exp(iα)�k(r). (35)

The eigenfunction �k(r) is therefore also an eigenfunction of the translation operator over one
period in the y-direction

T0,1�k(r) = exp(iα)�k(r) (36)

as expected from the Bloch theorem. Writing the parameter α in the form α = κya and
substituting this into equation (34) determines the constant K:

K = �y

2
cos(α) = �y

2
cos(κya). (37)

Now let us return to the recursion equation for gm

4aF

�y

(
Ek − E − K

aF
− m

)
= gm−1 + gm+1. (38)

Introducing the variables

s = Ek − E − K

aF
− m ∈ Z z = �x

2aF
(39)

we see that the solution of equation (38) is given by gm = Js(z), where Js is an ordinary Bessel
function. Therefore the dispersion relation reads

Ek = E + K + kaF = E +
�y

2
cos(κya) + kaF k ∈ Z (40)

which is independent of κx and periodic in κy with amplitude �y . Not surprisingly, this result
resembles the one obtained for a one-dimensional Wannier–Stark system interacting with a
time-dependent field.

Until now we have restricted ourselves to the case ax = ay = a. Let us now extend the
discussion to the case ax/ay = ql/rl , i.e. ax and ay are integer multiples of a fundamental
lattice length scale a, ax = qla and ay = rla. As before we will consider fields of the form

F = F√
qf

2 + rf
2

(
qf

rf

)
qf , rf ∈ Z (41)

because otherwise the two Bloch times in the two directions are incommensurable. The two
directional Bloch times are

Tx = 2πh̄

axFx

= 2πh̄

aqlqf F

√
qf

2 + rf
2

Ty = 2πh̄

ayFy

= 2πh̄

arlrf F

√
qf

2 + rf
2

(42)

and the common Bloch time is defined by

TB = qTx = rTy with q = qlqf

kl
r = rlrf

kl
(43)
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with k = gcd(ql, rf ) and l = gcd(rl, qf ). Inserting this into equation (9) gives

aFkl√
qf

2 + rf
2

(
Ek − E

aFkl

√
qf

2 + rf
2 − qm − rn

)
cm,n

= �x

4
(cm−1,n + cm+1,n) +

�y

4
(cm,n−1 + cm,n+1) (44)

and, similar to the derivation above, we obtain the energy spectrum

En = E + n
aFkl√

qf
2 + rf

2
. (45)

The splitting between two levels in the case ax = ay = a is therefore enlarged by a factor kl.
The same result can be obtained when we consider the following simplistic model. Given the
period of the potential both parallel and orthogonal to the field direction, one can determine
the number of initial Wannier states located in a Wigner–Seitz cell. This number is equal to
the number of subbands that are contained in one fundamental energy interval of the system.
The latter is given by the strength of the field multiplied by the period of the potential in the
field direction. Because of symmetry, the splitting between two arbitrary adjacent subbands is
constant. Let us check this more carefully, as follows.

The period ap of the potential parallel to the field direction is given by

ap = spa

√
qf

2 + rf
2 sp = qlrl

gcd(qf rl, qlrf )
(46)

and the period ao orthogonal to the field reads

ao = soa

√
qf

2 + rf
2 so = qlrl

gcd(qf ql, rf rl)
. (47)

The size of the Wigner–Seitz cell is apao and the main part of each inital Wannier state occupies
approximately the area axay = qlrla

2. Therefore we have

N = apao

axay

= spso(qf
2 + rf

2)

qlrl

(48)

states in this area. With the fundamental energy interval �Ef = apF , we get the splitting
between two adjacent subbands:

�E = �Ef

N
= aF

√
qf

2 + rf
2

so(qf
2 + rf

2)
ql rl

= aF√
qf

2 + rf
2

gcd(qf ql, rf rl)

= aF√
qf

2 + rf
2

gcd(qf , rl)gcd(ql, rf )

= aFkl√
qf

2 + rf
2
. (49)

The factorization of gcd(qf ql, rf rl) in the form used above is only possible because
gcd(qf , rf ) = gcd(ql, rl) = 1. Note that the result obtained in this simple way is equivalent
to that in equation (45).
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3.3. One step beyond the tight-binding approximation

So far we have only considered the most simple tight-binding approximation, i.e. we have only
taken into account the interaction between two neighbouring Wannier states. But we will see
that we can quite easily drop this restriction and still arrive at similar results as before.

For simplicity, we restrict ourselves to the case where the two periods of the potential
are the same, i.e. ax = ay = a. In the previous sections, we worked with a tight-binding
Hamiltonian which includes only the von Neumann neighbourhood between interacting states.
The next logical step is to choose the Moore neighbourhood which also takes into account the
neighbouring states along the diagonals. This leads to the tight-binding Hamiltonian

Htb =
∑
m,n

(
E + Fxaxm + Fyayn

) |m, n〉〈m, n| +
�x

4

(|m + 1, n〉〈m, n| + |m, n〉〈m + 1, n|)

+
�y

4

(|m, n + 1〉〈m, n| + |m, n〉〈m, n + 1|)
+

�xy

4

(|m + 1, n + 1〉〈m, n| + |m, n〉〈m + 1, n + 1|
+ |m + 1, n − 1〉〈m, n| + |m, n〉〈m + 1, n − 1|). (50)

In this formula, �xy determines the interaction strength along the diagonals. Performing the
same steps as before, we arrive at the recursion relation

aF√
q2 + r2

(√
q2 + r2

Ek − E

aF
− mq − nr

)
cm,n

= �x

4
(cm−1,n + cm+1,n) +

�y

4
(cm,n−1 + cm,n+1)

+
�xy

4
(cm+1,n+1 + cm+1,n−1 + cm−1,n+1 + cm−1,n−1). (51)

It is easy to check that the coefficient cm,n is again proportional to Js , where s is given by
s =

√
q2 + r2(Ek − E)/(aF ) − mq − nr , and therefore the energy spectrum does not change.

But now, due to the new terms in the rescursion relation, Js depends not only on βq and βr ,
but also on βq+r and β|q−r|, where the last two are given by

βq+r = 2
�xy

4

√
q2 + r2

aF(q + r)
β|q−r| = 2

�xy

4

√
q2 + r2

aF |q − r| . (52)

Therefore the absolute value of the coefficients cm,n do change when we discuss another
neighbourhood—which is no surprise—but the energy spectrum and the symmetry properties
of the eigenfunctions stay the same. It is remarkable that using the generalized Bessel
functions, we can express the solution of nearly every possible 2D Wannier–Stark tight-binding
Hamiltonian in closed form.

4. Time evolution of a 2D Floquet–Bloch state in the single-band approximation

The last section of this paper deals with the time evolution of a 2D Floquet–Bloch state in the
single-band approximation for the case ax = ay = a. A Floquet–Bloch state is an eigenstate of
the time evolution operator over one Bloch period which reproduces itself up to a phase factor.
When using the single-band approximation, i.e. by neglecting the interaction between different
bands, the Floquet–Bloch state can be approximated by propagating an arbitrary Bloch state
of the field-independent Hamiltonian over one Bloch period and collecting the phase it gathers
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during this process. The time evolution of a Floquet–Bloch state can therefore be approximated
by the Houston-like formula [Hou40]

φκ0 = exp

(
− i

h̄

∫ t

0
E

(
κ0 − F t ′

h̄

)
dt ′
)

φκ0−F t/h̄

= exp

(
− i

F

∫
γ

E(κ) dκ

)
φκ (53)

where γ = [0, t] → [κ0 −F t/h̄, κ0], κ(t ′) = κ0 −F (t − t ′)/h̄ is a path in quasi-momentum
space and φκ is the Bloch state with quasi-momentum κ in the field-free case. E(κ) consists
of the dispersion relation of the field-free case plus a field-dependent term. It is a periodic
function in κ and can therefore be written as

E(κ) =
∑
m,n

Em,neimaκx+inaκy (54)

where the expansion coefficients Em,n are given by Em,n = 〈0, 0|H0 + F · r|m, n〉. The
Wannier states can be chosen to be real [Koh72] and therefore the Em,n are also real. Because
E±m,±n = Em,n is independent of the individual signs of m and n, we can write E(κ) in the
form

E(κ) =
∑
m,n

Em,n cos(maκx + naκy). (55)

We use this formula to compute the integral in the exponent of equation (53):∫ t

0
E

(
κ0 − F t ′

h̄

)
dt ′ =

∑
m,n

Em,n

∫ t

0
cos

(
αm,n − maFxt ′

h̄
− naFyt ′

h̄

)
dt ′

=
∑
m,n

Em,n

∫ t

0
cos

(
αm,n − 2π

t ′

TB
(qf m + rf n)

)
dt ′

=
∑

qf m+rf n=0

Em,n cos(αm,n) t +
TB

2π

∑
qf m+rf n �=0

Em,n

qf m + rf n

×
{

sin

(
αm,n − 2π

t

TB
(qf m + rf n)

)
− sin αm,n

}
. (56)

Here, αm,n is an abbreviation for maκx,0 + naκy,0. The quasi-energy is defined by the phase
the state gathers while being propagated over one Bloch period. By inserting the Bloch time
TB in the equation above we get the quasi-energy

Ē(κ0) =
∑

qf m+rf n=0

Em,n cos(αm,n)

=
∑

qf m+rf n=0

〈0, 0|H0 + F · r|m, n〉 cos(αm,n). (57)

Therefore only those matrix elements contribute whose associated Wannier states lie on a line
perpendicular to the direction of the field. Taking into account that the phase in equation (53)
is only determined up to multiples of 2π , we get the Wannier–Stark ladder

Ek = Ē(κ) + k
aF√

q2
f + r2

f

. (58)

Note that due to the summation condition qf m + rf n = 0, the quasi-energy (57) does not
change when we shift its argument κ along the direction of the field.
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The Wannier–Stark states of the system are given by the following integral:

�(r, 0) = 1

TB

∫ TB

0
dt exp

(
i

h̄
Ēt

)
U(t)φκ0(r, 0)

= 1

TB

∫ TB

0
dt exp

(
i

h̄
Ēt

)
exp

(
− i

h̄

∫ t

0
E

(
κ0 − F t ′

h̄

)
dt ′
)

φκ0−F t/h̄(r, 0).

(59)

To simplify the notation we choose κ0 = 0. Inserting (56) into (59) we arrive at

�(r, 0) = 1

TB

∫ TB

0
dt exp

(
− i

h̄

TB

2π

∑
�=0

Em,n

qf m + rf n
sin

(
2πt

TB
(qf m + rf n)

))
φ−F t/h̄(r, 0)

(60)

where �= 0 abbreviates the expression qf m + rf n �= 0. Representing the Bloch state φκ(r, 0)

in terms of Wannier functions 〈r|m, n〉
φκ(r, 0) =

∑
m̃,ñ

exp
(
iaκxm̃ + iaκyñ

) 〈r|m̃, ñ〉 (61)

and inserting this into equation (60) leads to

�(r, 0) = 1

TB

∫ TB

0
dt
∑
m̃,ñ

exp

(
− i

h̄

TB

2π

∑
�=0

Em,n

qf m + rf n
sin

(
2πt

TB
(qf m + rf n)

))

× exp

(
−i

2πt

TB
(qf m̃ + rf ñ)

)
〈r|m̃, ñ〉

=
∑
m̃,ñ

cm̃,ñ〈r|m̃, ñ〉 (62)

where cm̃,ñ is given by

cm̃,ñ = 1

TB

∫ TB

0
dt exp

(
− i

2πt

TB
(qf m̃ + rf ñ)

− i

h̄

TB

2π

∑
�=0

Em,n

qf m + rf n
sin

(
2πt

TB
(qf m + rf n)

))
(63)

(interchanging integration and summation is justified because the series is uniformly
convergent). To simplify this expression, we use the Jacobi–Anger equation (see equation
(2.3) in [Lor95]) for the IVBs

exp

(
i

∞∑
m=1

βm sin(mθ)

)
=

∞∑
n=−∞

Jn({βm}) exp (inθ) . (64)

The right-hand side of this equation is also uniformly convergent. Therefore:

exp

(
− i

h̄

∑
�=0

Em,n

qf m + rf m
sin

(
2πt ′

TB
(qf m + rf n)

))

= exp

(
− i

∑
�=0

∞∑
k=1

2Em,nTB

2πh̄k
sin

(
2πt ′

TB
k

)
δk,qf m+rf n

)

= exp

(
− i

∞∑
k=1

δk,qf m+rf n

∑
�=0

2Em,nTB

2πh̄k
sin(kθ)

)

=
∞∑

l=−∞
J−l({βk}) exp (ilθ) . (65)
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Above we have introduced the abbreviation θ = 2πt/TB and the variables

βk =
∑
�=0

δk,qf m+rf n

2Em,nTB

2πh̄k
. (66)

We use this to continue with our computation of cm̃,ñ:

cm̃,ñ = 1

TB

∫ TB

0
dt

∞∑
l=−∞

J−l({βk}) exp

(
−i

2πt

TB
(m̃qf + ñrf − l)

)

=
∞∑

l=−∞
J−l({βk}) δl,m̃qf +ñrf

= J−(m̃qf +ñrf )({βk}). (67)

Therefore the expansion coefficient cm̃,ñ is given solely by the IVB J−(m̃qf +ñrf )({βk}).
Let us compare this to the tight-binding result that we got before. In the tight-binding case,

we can simplify the variables (66) because the number of interactions which are taken into
account is limited. In the von Neumann neighbourhood only the combinations m = ±1, n = 0
and m = 0, n = ±1 are possible, and therefore only two variables βk are different from zero,
namely

βqf
= 2E1,0TB

2πh̄qf

= 2E1,0

Fxa
βrf

= 2E0,1TB

2πh̄rf

= 2E0,1

Fya
(68)

and the result (15) is recovered. The same holds if we consider the Moore neighbourhood
which adds the possible combinations m = ±1, n = ±1. Here we get the same formulae as
in section 3.3.

5. Conclusion

In this paper, the spectrum and the eigenfunctions of a 2D Wannier–Stark system in both the
tight-binding and single-band approximations are discussed. In the case of rational direction
of the field, the spectrum consists of a set of equally spaced energy ladders, the Wannier–Stark
ladders. The splitting between two energy levels depends strongly on the direction of the field
as does the number of levels in one fundamental energy interval. For the special case where
the field was aligned along one of the axes, the energy relation E(κ) is independent of shifts
along the field direction and is periodic orthogonal to it. Using the infinite-variable Bessel
functions, a closed solution for the eigenfunction of an arbitrary 2D Wannier–Stark tight-
binding Hamiltonian is obtained and for two special neighbourhoods (von Neumann, Moore)
the results are given in explicit form. The generalization to Hamiltonians which include
interactions with sites farther apart is straightforward. Finally, the Wannier–Stark states in the
scope of the single-band approximation are derived using a basis of Wannier functions. The
results obtained give a promising start for the generalization of 1D results and effects to 2D
systems which are now experimentally accessible.
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